T-N Cutler-Hammer

August 2007

ECSTD Series Current Switch CurrentWatch Current Sensors

AC Current Switches with Time Delay

Contents

1

Overview	1
Model Selection,	2
Model Selection,	2
Accessories	3
Wiring Diagram	3
Specifications	4
Dimensions	5

The CurrentWatch ECSTD Series from Eaton's electrical business is a family of high performance currentoperated switches with fieldadjustable time delay to help minimize nuisance trips during start-up and operation. Designed for motor status applications where setpoint accuracy and repeatability are critical, the ECSTD Series offers a linear setpoint characteristic and constant hysteresis. Standard features include selfpowering, jumper-selectable ranges and a choice of outputs and housing styles.

For typical applications of the Current-Watch ECSTD Series, see listing to the right.

Approvals

- UL Listed
- **C**€ Pending

Unless otherwise noted, the products contained in this document are not designed or intended for use in human safety applications.

Split- and Solid-Core Models, All Self-Powered

Product Features

- Adjustable Start-Up/Delay Timer Field adjustable from 0 15 seconds to eliminate nuisance alarms due to start-up inrush or temporary overcurrent conditions
- Choice of N.O./N.C. AC or Universal Outputs Contact ratings of 1.0A @ 240V AC or universal outputs of 0.15A @ 240V AC/DC (N.O. models) and 0.2A @ 135V AC/DC (N.C. models) for use with most standard motor control systems
- Improved Ease of Installation and Use Self-powered, split-core models simplify installation, 1.0A AC rating eliminates need for time delay relay, and status LED provides visual indication of setpoint trip and contact action
- Industrial Grade Performance Constant hysteresis and linear response characteristics enhance setpoint accuracy
- Agency Approved UL Listed, CE pending

Typical Applications

- Motor Protection Serves as an electronic proof-of-operation; detects current draw changes in motors when they encounter problems such as pumps running dry or pending bearing failure; non-intrusive and less expensive to install than differential pressure flow sensors or thermal switches; much quicker response time than Class 10 overload relays
- High Inrush or Temporary Overload Current Adjustable start-up/delay timer allows 0 15 second delay to eliminate nuisance trips from high inrush or short overload conditions

For Customer Service in the U.S. call **1-877-ETN CARE (386-2273)**, in Canada call **1-800-268-3578**. For Application Assistance in the U.S. and Canada call **1-800-426-9184**. **Cutler-Hammer**

August 2007

F:T•N

CurrentWatch™ Current Sensors ECSTD Series Current Switch

Model Selection — CurrentWatch ECSTD Series

	Power Supply	Aperture Size	Output Type	Setpoint Options	Catalog Number
AC Output Switches (N.O./N.C. 1A @ 240V AC)					
Solid-Core Housings Self Powe External P	Self Powered (No External Power Needed)	elf Powered (No xternal Power Needed)	Normally Open	Adjustable Setpoints: 1.5 – 12, 12 – 55 or 50 – 175A	ECSTD401SC
			Normally Closed	Adjustable Setpoints: 1.5 – 12, 12 – 55 or 50 – 175A	ECSTD402SC
Split-Core Housings		0.85 in. (21.6 mm)	Normally Open	Adjustable Setpoints: 2 – 12, 12–55 or 50 – 200A	ECSTD404SP
			Normally Closed	Adjustable Setpoints: 2 – 12, 12 – 55 or 50 – 200A	ECSTD405SP

AC/DC Output Switches (N.O. 0.15A @ 240V AC/DC, N.C. 0.2A @ 135V AC/DC) ①

Solid-Core Housings External Po	Self Powered (No External Power Needed)	Powered (No rnal Power Needed)	Normally Open	Adjustable Setpoints: 1.5 – 12, 12 – 55 or 50 – 175A	ECSTD406SC
			Normally Closed	Adjustable Setpoints: 1.5 – 12, 12 – 55 or 50 – 175A	ECSTD407SC
Split-Core Housings		0.85 in. (21.6 mm)	Normally Open	Adjustable Setpoints: 2 – 12, 12– 55 or 50 – 200A	ECSTD408SP
			Normally Closed	Adjustable Setpoints: 2 – 12, 12 – 55 or 50 – 200A	ECSTD409SP

1 Preferred for PLC inputs.

Stocked product, typical order quantities guaranteed in stock.

August 2007

Example Application — CurrentWatch ECSTD Series

Isolated Alarm System Interfacing

Accessories — CurrentWatch ECSTD Series

Description	Catalog Number
DIN Rail Mounting Kit (Sensor pictured for reference and not included in kit)	EDINKIT

Stocked product, typical order quantities guaranteed in stock.

Wiring Diagram — CurrentWatch ECSTD Series

NOTE: The above diagram is for Normally Open (N.O.) models.

Cutler-Hammer

August 2007

Specifications — CurrentWatch ECSTD Series

Description	Specification				
Power Supply	Self-Powered — No Power Supply Needed				
Output	Magnetically Isolated Solid-State Switch				
Output Rating	AC Output Models: N.O./N.C. 1A @ 240V AC AC/DC Output Models: N.O. 0.15A @ 240V AC/DC N.C. 0.20A @ 135V AC/DC				
Off-State Leakage	< 10 µA				
Response Time	Adjustable 0.2 to 15 sec.				
Setpoint Range	Solid-Core: 1.5 – 12, 12 – 55 or 50 – 175A Split-Core: 2 – 12, 12 – 55 or 50 – 200A (Jumper Selectable)				
Hysteresis	5% (constant)				
Overload	Housing Range Maximum Amps				
			Continuous	6 sec.	1 sec.
	Solid-Core	1.5 – 175 A	175 A	400 A	1000 A
	Split-Core	2-200 A	200 A	400 A	1000 A
Isolation Voltage	5,000V AC (tested)				
Frequency Range	50 – 100 Hz				
Sensing Aperture	Solid-Core Models: 0.75 in. (19 mm) dia. Split-Core Models: 0.85 in. (21.6 mm) sq.				
Housing	UL94 V0 Flammability Rated				
Environmental	Operating Temperature: 5 to 122°F (-15 to 50°C) Humidity: 0 – 95% RH, Non-condensing				
Approvals	UL 508 Industrial Control Equipment (USA and Canada), CE Pending				

LED Indication/Output Status

Monitored Amps	Output		Smart-LED
	N.O.	N.C.	(If Present)
None or Minimum	Open	Closed	Off
Below Trip Level	Open	Closed	Slow (2 sec.)
Above Trip Level	Closed	Open	Fast (0.5 sec.)

ET·N Cutler-Hammer

August 2007

Approximate Dimensions — CurrentWatch ECSTD Series

Description	Approximate Dimensions in Inches (mm)
Solid-Core Housings	$\begin{array}{c} 2.43 \\ (61.8) \\ 0.75 \\ (19) \\ Dia. \\ (24.56) \\ 0.967 \\ (24.56) \\ (3.2) \\ (3.2) \\ (3.2) \\ (3.3) \\ (38.3) \\ (4.5 \text{ Int. Dia.}) \\ \text{Typical of 2} \\ (4.5 \text{ Int. Dia.}) \\ \text{Typical of 2} \\ (4.5 \text{ Int. Dia.}) \\ \text{Typical of 2} \\ (4.5 \text{ Int. Dia.}) \\ \text{Typical of 2} \\ (3.2) \\ (3.2) \\ (3.2) \\ (3.2) \\ (3.3) \\ (38.3$
Split-Core Housings	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$